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Introduction

This report summarizes progress made from 1 June 1986 through 30
November 1986 in developing an effective algorithm for estimating vegeta-
tion cover at subpixel resolution. An important application is the
estimation of soil hydraulic properties in natural water-limited vegeta-
tion systems using Eagleson's "climatic-climax” hypothesis (Eagleson,
1982, Eagleson and Tellus, 1982). It is also critical to the
subgrid-scale parameterization of heat and moisture fluxes across the
atmosphere-landsurface interface in the development of global-scale
numerical atmospheric general circulation models (GCMs). Such models are
essential for the study of climate change and for large-scale
environmental impact assessment. Calculation of the fluxes requires
knowledge of effective areal averages of soil hydraulic properties and of
vegetation characteristics at the mesoscale.

An earlier report (Jasinski and Eagleson, April 1986) concluded that
only a few methods for resolving mixed pixels were available, and they
had not been tested for the special case of determining percent canopy
cover. Two formulations were proposed: One using the normalized vegeta-
tion index, a second involving a simplified expression of the radiative
transfer equation.

That report also includes details of the database acquired for thé
project study area near Taos, New Mexico. .Landsét MSS data were obtained
from the Bureau of Land Management (BLM) Branch of Remote Sensing,
Denver, Colorado. Ground truth in the form of 1:3000 color aerial photOf
graphs were borrowed from the BLM Taos Resource Area Office, Taos, New

Mexico.”



The present report summarizes the various approaches relevant to
estimating canopy cover at subpixel resolution. The approaches are based
on physical models of radiative transfer in non-homogeneous canopies and
on empirical methods. The effects of vegetation shadows and topography
are examined. Simple versions of the model are tested, using the Taos
Study Area database. Emphasis has been placed on using relatively simple
models requiring only one or two bands. Although most methods require
some degree of ground truth, a two-band method is investigated whereby
the percent cover can be estimated without ground truth by examining the
limits of the data space. Future work is proposed which will incorporate
additional surface parameters into the canopy cover algorithm, such as
topography, leaf area, or shadows. The method involves deriving a
probability density function for the percent canopy cover based on the

joint probability density function of the observed radiances.

Homogeneous Canopy Reflectance

The radiation reflected from horizontally homogeneous canopies
results from the scattering and refleﬁtance properties of the plant
components and soil background. These properties are both geometric and
biophysical in nature and thus depend on the species, maturity and over-
all health of the plant. Geometric plant properties include plant archi-
tecture, total leaf area, and leaf orientation and distribution. Bio-
physical properties allocate the radiative energy absorbed by the plant
to important metabolic processes including photosynthesis, respiration,
and transpiration. Those biophysical pfoperties are manifested in terms
of leaf color, transparency, temperature, and shape and orientation. |

Plant p}operties can vary daily and seasonally, in response to soil

moisture and nutrients, and to meteorologic and climatic conditions.



Numerous radiative transfer models for horizontally homogeneous
canopies have been developed in terms of various plant properties and
background soil reflectance. Typically, homogeneous canopies have been
modeled as a diffusing medium with absorbing and scattering properties.
Excellent reviews of these models are provided by Smith (1983) and Ross
(1984). Suits (1972) envisioned a plant canopy as an infinitely extended
plane-parallel medium with homogeneous geometric properties. Verhoeff
and Bunnik (1981) extended the soils model to include the effect of leaf
angle distribution. Dickinson (1983) applied the two-stream approxima-
tion for radiation transfer in the atmosphere (Meador et al., 1980) to
plant canopies employing the leaf area index (LAI) as a measure of the
optical depth. Recent literature has increased the sophistication of
those earlier models to include the modeling of bidirectional reflectance
(Wwalthall et al., 1985, Chen, 1985, Simmer et al., 1985, Vanderbilt et
al., 1985, Strebel et al., 1985, Gerstl et al., 1985, and Reyna et al.,
1985). Attention has also been focused on the invertibility of canopy
reflectance models for estimating plant parameters such as LAI, biomass,
and leaf angle distribution (LAD) (Goel et al., 1983, Goel et al., 1984a,
Goel et al., 1984b, 1984c, 1984d, Lang et al., 1985). Goel et al. (1984)
have shown that such parameters can, in principle, be estimated using
only canopy reflectance measurements at several viewing angles.

Because such theoretical models are ofteﬁ cumbersome to use, semi-
empirical formulas for the total radiation fluxes have been proposed for
practical applications. The attenuation of radiation as it passes
through a plant stand has been typically described in terms of some form

of Bouguer's Law such as that proposed by Monsi and Saeki (1953), or
{/’
(L) = L exp(—uL) (1)



where

I = intensity of radiation at top of canopy

(L) intensity of radiation at a penetration level

associated with leaf area index, L

H experimentally determined extinction coefficient

The plant reflectance, T,s is thus

T =1-e (2)

Other formulas which account for the different attenuation of
penetrated and scattered radiation, as well as absorbed radiation, have
been proposed (Ross, 1981).

Actual reflectances of plants in the visible and near infrared are

well documented, especially for crops (Smith, 1983, Myers, 1983). Canopy

reflectance is highly wavelength dependent as shown in Exhibit 1. It is
typically low in the visible spectrum (£ 30%) and higher in the near
infrared region (> 50%). Canopy reflectances are generally much lower
than those measured for individual leaves (Dickinson, 1983). Kondratyev_
(1969), Gates (1980), Ross (1981) and Iqbal (1983) provide summaries of

reflectances for various natural vegetation covers.

Non-Homogeneous Canopy Reflectance

Non-homogeneous canopies are those which contain several vegetafion
or soil types within the level of resolution being investigated. Most
natural landscapes will vary both horizontally and vertically in species
and/or vegetation density. Modeling this situation has received
considerably less attention than have homogeneous canopies. Statistical
techniques have been employed for classifying landscapes. However, such

methods require the identification of training samples and therefore can -

-



not be adopted for natural landscapes in which all target pixels possess
unique spectral characteristics.

Radiative transfer models for non-homogeneous canopies have been
developed by extending homogeneous canopy models and including
three-dimensional scattering functions (Ross, 1981, Kimes, 1984). Such
models can be solved in a few cases where plant distribution is periodic,
such as for sown crops. Applications to natural systems is impractical
if not impossible as 1t would require knowing a priori an inordinate
number of plant parameters.

The problem can be somewhat simplified by recognizing that for most
hydrologic or climate modeling purposes, it is generally sufficient to
know only the outgoing radiance at the surface of a canopy, and not the
complex scattering and absorption phenomena within the canopy.

Researchers have investigated mixed pixels by examining only the
surface reflectivities of the individual components. Two such approaches
are summarized below.v

Proportion Estimation

A simple approach has been to assume that the surface reflectivities
of individual plant clusters and soils within a pixel are constant, and
that the total spectral response is a linear combination of the
individual spectral responses of its components (Horwitz et al., 1971,
Nalepka et al., 1972, Work, 1974, McCloy, 1980, Dozier, 1981, Ungar et
al., 1981, Chhikara, 1984). The total radiance emit;ed from a pixel, IA’
containing n cover types can be expressed

n
I. = Z miI)\i ‘ (3)




where

m, = fraction of area covered by cover type i;

IAi = radiance emitted from cover type i in band A.

For the simple case of vegetation and soil cover, each with constant

reflectivities, Equation (3) becomes:

IA = mI}‘v + (1—::1)1}‘s (4)

B
it

percent vegetation cover

va’Ixs radiances emitted from vegetation and soil,
respectively, in band ).

Perhaps the earliest development of proportion estimation can be
attributed to Horwitz et al. (1971) and Nalepko et al. (1977) who also
termed the method "mixtures estimation”. One of its first applicatioms
was In identifying subpixel scale ponding and wet marshes in glaciated
prairies (Work, 1974); »

McCloy (1980) later proposed that under conditions of negligible
canopy transmission or multiple reflection, the response proportions of
the various land covers will closely approximate the physical proportions
of each type of cover. He suggested that up to four sub-pixel categories
be used including three levels of vegetation greenness cover and one soil
background cover. Ungar et al. (1981) reported limited success
delineating forest canopy types in Maine using a similar approach which
they termed the “Fanning algorithm™. The functional area was determined
by minimizing the error between observed and theoretical radiances.

‘Dozier (1981) also proposed such a method using two infrared bands

for differentiating radiant temperature fields of sub-pixel spatial e

resolution. Corrections for atmospheric effects were included.



Geometric Models

In an extension to the linear proportion estimation model described
above, some investigators have considered the shadow cast by vegetation
as an additional component to the total radiance. These models abstract
clumps of vegetation as three-dimensional géometric shapes on horizontal
surfaces with constant reflectivities (Otterman 1981, 1984, Otterman et
al., 1984, Strahler et al., 1981, Li et al., 1985).

Otterman (1981, 1984) and Otterman et al. (1984) envisioned forests
and desert vegetation as thin vertical cylinders. While accounting for
the shadowing effects of vegetation clumps, the formulation assumes that
reflection from the top of the clumps is negligible. This model is thus
not directly applicable to the determination of percent vegetation cover.

Strahler et al. (1981) and Li et al. (1985) modeled conifer forests
as randomly located cones of similar shape and random height. They
determined from simple geometry the shadow cast by the cones on the soil
background or on other cones. The total radiance emitted by a pixel was
assumed to consist of four components: illuminated background,
illuminated cones, shadowed background and shadowed cones. Vegetation
parameters including percent cover and average tree height were then
estimated using assumed values of component reflectivities.

A simple version of the geometric model is presented below.
Assuming the radiance emitted from shadowed areas negligible, the total

radiance from sparse conifer trees, I , modeled as cones on a horizontal

A
s0il background with constant reflectivities is,

_ 1,3y, (Lyeoty x |
I = Ixo{m[r)\v(2 + 1T) rxs(2 + - + 1r)] + rks} | (5)

sin_l(tan o/tan 8)

<
n



6 = solar zenith angle
a = ratio of tree height to base radius,
assumed to be constant

I>‘o = incident radiation in band ).

The model can be extended to include non-horizontal surfaces and
overlapping of shadows. Li et al. (1985) further assumed a poisson

distribution of the cones and random overlap of shadows.

Satellite Observed Radiance

In order to derive canopy parameters from satellite data, it is
necessary to couple the radiative transfer through the atmosphere to that
through the plant canopy. As a starting point, it is useful to review
the atmospheric models which have been developed for the visible and near
infrared regions.

The theoretical nadir radiance observed by a satellite has been
derived by several authors (Dave 1980, Otterman et al., 1979, 1980, and
Otterman, 1978, 1981) for a pure pixel in a background of different
reflectivity. The nadir radiance is expressed in terms of three

components. The direct beam from the object pixel which has been

attenuated due to atmospheric effects, Lnpy, is

Liry = 76, exp(-7,)/w (6)
where T = reflectivity of object pixel
GA = global surface irradiance on object pixel
(Otterman, 1978)
T = total vertical optical thickness, a function of ) .
The total optical thickness is a sum of optical' thicknesses due to -

Rayleigh scattering by gas molecules, TRo and Mie scattering by aerosols,
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Ty also functions of ).

~Assuming a Lambertian surface, the portion of diffuse radiance from

the surrounding vicinity which is scattered to the satellite by the

atmospheric column above the object pixel is

n/2
Loay ™ (aGA/“TX)fo [1-exp(-1, /cos ¢)]cos ¢lt, P o (4)*T, P\ ($)]2n sinpds
(7
where
a = average reflectivity of the surrounding vicinity
PAR’PAM = phase functions associated with Rayleigh and

aerosol (Mie) scattering, respectively

zenith reflection angle.

=
[l

Finally, the radiance scattered from the direct solar beam back to the

satellite is written

(180°-¢ )]  (8)

. u [l-exp{-1, (1+sec o }7,gP€180° =0 ) + 7,P

nd) T)\(l + 4 )

cos 0 -

where H

@
"

solar zenith angle

The total nadir radiance is the sum of equations (6), (7) and (8). The
amount of area to be considered in determining the average surrounding
reflectivity is discussed by Otterman et al. (1979). Otterman et al.

(1980) reduced the above equations to a simpler form in the case of an

optically thin atmosphere.

Subpixel Resolution of Satellite Observed Radiance

The atmospheric model is coupled to the canopy models through the
reflectance parameter, r, in the direct beam equation. For homogeneous

canopies, the direct beam equation can be rewrittem for example,



11

G -7

= _A -uL A
Lnr)\-ﬂ_(l—eu)e 9)

For non—-homogeneous landscapes, the proportion estimation equation (3)

can be included into the direct beam equation yielding

G n
A
Laey = T &P (1) [121 miTyil (10
where r, = reflectivity of component i

m, = fraction of pixels exhibiting reflectance Ty®

Finally, the conical geometric model incorporated into the direct beam

equation yields

G)\ 1 y 1 cot vy
arx - o exP(-TA){[m(rAv(§'+ 1T) - rxs(§.+

- +%— ))] + rls} (11)

For clear skies in which the atmosphere 1s considered optically
thin, direct beam radiation can constitute 80 - 907 of the total
radiation observed by a satellite. The more complex scattering terms can
often be neglected, which leaves a relatively simple expression of
satellite observed radiance in terms of GA’ Ty m, rlv, r)‘v and y. A
~straightforward application of proportion estimation for a two component
system, i.e., soil and vegetation, would include equation (10) with four
unknowns; m,

LI and the term G exp(—rk)/w.

Tawv A
Inclusion of shadow effects from a conifer forest (modeled as cones)
would involve an additional unknown, y.

The application of equations (10) or (11) to the determination of m
depends.on the data set being used and on the number of a priori assump-

tions one is willing to accept about other parameters, such as e

rAv, rAs, and tA. The use of multispectral bands can help reduce the
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number of unknowns, especially if reasonable assumptions are made
regarding the relationship between a given parameter in different bands.
The results of several variations of these models tested with field data

are provided in a later section of this report.

Two Band Method

The ideal canopy cover algorithm would not only provide percent
coverage of individual pixels, as well as several parameters such as
vegetation and soil reflectivities, but would do so without the need for
ground truth. The following procedure was investigated as a step toward
achieving that goal.

It has been observed in a manner similar to previous authors (e.g.,
Kauth and Thomas, 1978), that MSS data plot in characteristic shapes in
the two, three, or four-band space. For the MSS bands 4 and 2, with band
4 plotted along the ordinate and band 2 along the abscissa, the data
typically fall in a triangular-like shape in the upper half plane with
curved sides and a flat base and with sometimes a "tasseled cap”. This
has indeed been true for the Taos Study Area whether one plots the entire
region (all types of vegetation) as shown in Exhibit 2, or segments of
the region, as shown in Exhibit 3 for the valley area, and Exhibit 4 for
the foothills region.

It can be shown using the direct beam equation that such character-
istic triangular shapes can be explained in terms of the percent coverage
of vegetation as well as the absolute values of the vegetation and soil
reflectances. The starting point is the expression for direct beam,

equation 10, written in terms of reflectances for MSS bands 2 and 4, or

(12) -

r, =m(r, ~r, )+r
2v  T2s e

2 2s
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Ty = omlr,ym T T (13)

where

r, ,r, = vegetatlon reflectance in MSS bands
2v? 4v

2 and 4, respectively,

rzs,ras = soil reflectance in MSS bands
2 and 4, respectively, and
T, T, = total observed reflectance of pixel

in bands 2 and 4, respectively.

A simple triangular shape can be achieved by setting r, , and r

2v 4v

constant, and letting Tog and T, Vary over a range of values. A line

representing m = 0, or "soil line"” (or "background line") will form the
base of the triangle stemming from the origin. Lines for values of m > 0
will plot above but parallel to the soil line. The value for m=1, or
full coverage, will plot as a single point at the apex of the triangle.
For instance, a simple triangle is illustrated in Exhibit 5 for the case
of a landscape with a single vegetation species with constant
reflectivity. That shape was drawn using Ty = 0.10, Ty = 0.40, and

soil reflectivities falling in the intervals 0.08 < r S.S 0.40 and 0.10 <

2

r,. £ 0.50. The only constraint is that rzs/r45 remain approximately

4s

constant which is a reasonable assumption.
The effect of changing the reflectivity values is shown in Exhibit 6
(changes of vegetation reflectivity) and Exhibit 7 (changes in soil

reflectivity). For instance, Exhibit 6 indicates that increasing Toy

will tend to flatten the triangular data space by moving the top of the

triangle toward the soil line. An increase in L. will cause the

or r, will have no effect on -~
<4

opposite effect. A change in either Ty

the soil line as one expects.
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The simple model yielding a triangular shape can be extended to
include the effects of varying vegetation reflectivity and shadows. For
instance, by assuming that vegetation reflectivity is linearly related to
percent cover, the triangular shape takes on curved sides as shown in
Exhibit 8. The inclusion of shadows caused by conical figures will cause
the triangle to take on a tasseled cap as shown in Exhibit 9. While
other variations in plant parameters might cause similar effects, the
above examples illustrate how the characteristic shape of the data space
can be explained in terms of physical attributes of the components of the
pixel. Application of the two—band model to field data is provided later

in this report.

Empirical Estimators of Vegetation Parameters

Numerous vegetation indices have been proposed in recent years as
qualitative indicators of green vegetation. The purpose has been to
reduce the several multispectral bands to one value to estimate vegeta-
tion parameters such as biomass, leaf area index, or percent cover.
Perry et al. (1984) summarize the many different vegetation indices and
describe their relationship to each other. Three such indices are the
normalized vegetation index, the perpendicular vegetation index, and the
Kauth-Thomas Greenness index.

Normalized Vegetation Index

0f the many indices proposed, the normalized vegetation index (NVI)
has evolved as a practical popular choice for use in regression with

vegetation parameters. It is of the form
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r -r
NVI = rIR . rVIS (14)
IR Vis
where rIR and rVIS represent the pixel reflectivity in the IR and visible

ranges, respectively. Low NVI indicates low vegetation amount, whereas
high NVI indicates either high vegetation amount or high productivity
(Curran, 1980). Sellers (1985) discussed the functional relationship
between the normalized VI and several vegetation parameters, including
the leaf area index. Tucker et al. (1983) correlated the NVI (computed
from NOAA's AVHRR data) to actual biomass obtained from field sampling in
a semi-arid region of Senegal, West Africa. The effect of soil back-
ground on NVIs computed from hand-held or airborne radiometer data was
investigated by Elvidge et al., 1985, and Huete et al., 1985.

Physical Basis. While the behavior of NVI can be qualitatively

described in terms of chlorophyll absorption in the red region and
scattering due to leaf area index in the near infrared, it can also be
explained in terms of percent cover using the direct beam equation
written in terms of reflectivities (12) and (13). Inserting (12) and

(13) into (14) yields,

m[(r4v- r4S) - (r2v_ rZS)] + Tas ~ Tog
NVI = m{(r, ~r, )+ (r, -~ ., )] + 1, +1 (15)
4y 4s 2v 2s 4s 2s

It is now noted that theoretically, the reflectance of any pixel
composed of only one type of soil and vegetation must fall between the
limits prescribed by the pure canopy and pure soil reflectivities shown

in Exhibit 1. Using typical values for rAS, r2$’ rév and r2v as indica-

ted, it is reasoned that the expression (r4v— rhs) is generally a posi-

~
tive value, whereas (rZv - r2s) is generally negative. As m increases, -
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the numerator becomes more positive, while the denominator decreases.
Thus NV1 should increase with increasing percent vegetation cover, as has
been observed.

Perpendicular Vegetation Index

Richardson and Wiegard (1977) proposed the perpendicular vegetation
index (PVI) as a measure of plant development. Application of this index
first requires the establishment of a background soil line by linear
regression of MSS bands 2 and 4 using bare soil pixels. The soil line is
thus a straight line stemming from near the origin. The PVI is the
perpendicular distance from the soil line to the actual data point which

contains vegetation, and is defined,

S S (16)
g2 p2 g4 p4
where
rgz,rg4 = reflectances of soil background in bands
2 and 4, respectively, corresponding to
the data point.
rpz,rp4 = reflectances of data point in bands 2 and 4, respec-

tively, perpendicular to rg2 and rg4 on the soil

line.

Richardson et al. (1977) regressed PVI with percent cover of sorghum
with a correlation coefficient of 0.57. Theis et al. (1984) studied the
effect of vegetation and soil moisture on PVI. Rosenthal et al. (1985)
recently used the PVI to investigate crop height and biomass.

Physical Basis. The behavior of the PVI can be readily demonstrated

in terms of percent cover using the two-band method presented earlier,

although the methods are slightly different. By setting r2v and r,, con~

stant and letting Tos and r,o range from dark to bright values, a tri- -
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angular data space can be drawn. The base of the triangle, or soil line,
stems from the origin and represents the condition m = 0. As m increa-
ses, the data space moves perpendicularly from the soil line.

Thus, the PVI performs remarkably well in describing the physical shape
of the data space when explained in terms of percent vegetation cover.

Kauth-Thomas Greenness Index

Kauth and Thomas (1926) applied Gram-~Schmidt orthogonalization to
the original four Landsat bands resulting in a new four-dimensional space
termed “"tasseled cap”. The procedure, which is similar to principle
components except in the order of calculations, essentially rotates the
data so that most of the variability can be explained in terms of four
indices; greenness (GI), brightness (BI1), yellowness (YI), and nonsuch

(NI). The first two of these indices are defined,
BI = 0.332 DN1 + 0.603 DN2 + 0.676DN3 + 0.263 DN4 (17)

GI = -0.283 DN1 - 0.660 DN2 + 0.577DN3 + 0.388 DN4 (18)

where DN1, DN2, DN3, and DN4 represent the digital counts of.the three
visible and one near infrared bands of the MSS scanner, respectively. A
similar set of equations has been developed for the Thematic Mapper
(Crist, 1983, Crist et al., 1984).

The Kauth-Thomas Transformation has been used by numerous investiga-
tors to model various crop pérameters including crop development, mois-—
ture stress, yield and crop classification (Ezra et al., 1984). Huete et
al. (1984, 1985) in a series of small scale experiments of wooden boxes
filled with soil, showed high correlation of GI with percent cover.
Musick (1984), however, using Landsat MSS data over New Mexico, was

unable to achieve consistent differentiation between arid rangeland cover~”

changes using GI.



18

Application of Canopy Cover Algorithms to Taos Study Area

Several different canopy algorithms described above have been tested
at a preliminary level for a site located near Taos, New Mexico. The
database consisted of Landsat MSS data, and 1:3000 aerial photographs,
both supplied by the Bureau of Land Management. Details of the test site
selection, and data acquisition and processing are provided in Jasinski
and Eagleson (1986). |

The‘Taos Study Area is outlined in Exhibit 10. The land includes a
wide variation in surface relief, ranging from flat plains to rolling
foothills, to detached high ridges. Elevation ranges from 6,000 to
10,000 feet. Vegetation tends to follow the topography. The lower flats
are covered with blue grama and wheatgrass grasslands, and snakeweed,
rabbitbrush and sagebrush shrublands. Pinyon-juniper woodlands are found
in the rolling foothills. At the higher elevations, there is ponderosa
pine, spruce, fir and aspen. Percent cover ranges from nearly 0 to 100
percent, with the majority of the area 40 to 60 percent covered. At
least two trends in percent vegetation cover can be readily observed.
They are, first, a decreased percent vegetation cover with decreasing
altitude, and second, a less dense cover on south-facing slopes compared
to north facing slopes at the same elevation.

Regression with Normalized Vegetation Index

Three variations of this approach were tested by regression with
ground truth obtained from aerial photographs. A total of 116 pixels
were used. The first variation involves using the normalized vegetation
index with reflectivities as defined in equations (12) and (13). A
secon& ;ériation uses the normalized vegetation index defined in terms of

actual integer DN values instead of reflectivities. The third approach
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uses actual radiances. Details of these earlier studies were reported by
Jasinski and Eagleson (1986). Only the results are provided in Table 1
below and shown on Exhibits 11, 12, and 13.
Table 1
Normalized Vegetation Index

versus Percent Cover

NVI Variation m R2
X r,~-r
VIr" s rz m= 2.36 VIr + 6.68 0.56
i 2xDN, - DN,
‘ VIDN= m m= 1.99 VIDN + 0.95 0.61
R4- R2
VIR = W x 100 m = 3.06 VIR - 111 0.58

The results indicate that about 60% of the change in NVI can be
explained in terms of percent vegetation cover, no matter which variation
is used. The method is quick, requiring little analysis or computational
time.

There are several limits to the use of NVI for estimating percent
cover, First, the procedure needs to be calibrated with ground truth.
Second, its accuracy is dependent on the vegetation and soil reflectivi-

ties in each band being relatively constant, and also limited to r25 >

r and

gy 2 T, 0T

4s® For regions which are relatively uniform in

vegetation type, however, the method provides good results of percent

cover.
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Regression Using Direct Beam Equation

Assuming that the landscape consists of only two cover types, soil

and vegetation, equation (10) can be rewritten,

L

1 nri

m'—"
(rxv_rxs) {G

(19)

A sl
e exP(-Tx)

For constant reflectivities, m is approximately linearly related to the
observed radiance. With this in mind several linear regressions were
carried out with m as the dependent variable and the observed radiances
as dependent variables. The results are shown in Exhibits 14 and 15 and
summarized in Table 2.

Table 2

Summary of Linear Regressions

Regression Equation __gi_
m = 126 - 199R2 0.53
m = 377 - 138R4 0.10
m = 143 - 189R2/cos 8 0.42
m = 120 - 197 R2 cos B 0.53
m = 135 - 185 R2 cos g/cos § 0.44

where R2 and R4 are the observed radiances in MSS bands 2 and 4, respec-
tively.

Two modifications to the above linear regressions were made. First,
since-Gk is a function of the cosine of the zenith angle ¢, equation

(19) can be rewritten

1

m = A
(rxv_ T

nr
) [G' cosh —rxs]
A exp(-rx)

(20)
As .
n

-~



Second, slight corrections to the observed radiance can be made in the
case of non-horizontal surfaces. For surfaces with average slope g, the

equation for m can be rewritten

L COSsf

1 nrj

m = = [ -
(rxv rxs) ¢ A Co0s§

n

-r 21
eXP("‘rA) AS] (21)
For the above two cases, ground slope and azimuth of individual pixels
were measured from USGS 7.5-minute topographic maps. Zenith angle was

computed using the following formula (Iqbal, 1983),

Cos § = (sing cosB - cos¢ sing cosy) sing
+ (cos¢ cosB + sing sinB cosy) cos§ cosy
+ cos§ sinB siny siny (22)
[ = solar declination
w = hour angle
Y = surface azimuth angle
] = average slope of pixel

Solar declination and hour angle were estimated from knowing time of
Landsat overpass.

The results of the linear regressions including the new parameters
are surprisingly poor, as indicated on Exhibits 16, 17 and 18, and on
Table 2. In no case is the correlation improved. Part of the explana-
tion for the poor correlation may simply be due to the bidirectional
reflection characteristics of the soil. A likely explanation may also
simply be the inaccuracies introduced by measuring small distances off

the topographic maps. At the 1:24000 scale, pixels are less than 0.2 cm?



in area and small inaccuracies in measurement or pixel registration can
cause serious error in the regression analysis.

Use of the direct beam equation for estimating m has required a set
of ground truth. Having the ground truth, it is theoretically possible

to estimate the quantities "/[(rk -r. )G exp(—rx)]‘and )

v As® At s/(r -

He! v s

from the coefficients of the linear regression. If functional relation-
ships can be established between the individual parameters for each band

(e.g., r2x= f(rhx)) it is also possible, at least in theory, to calculate

all the reflectivity values r i as well as the quantities

2v’r4v’ r25 4s

G2t exp(—rz) and G4t exp(—TA) using data from bands 2 and 4.

Regression with Kauth-Thomas Indices

The Kauth-Thomas greenness and brightness indices were computed
and then regressed with actual percent cover obtained from the aerial
photographs. The results which are somewhat poorer than anticipated, are
shown in Table 3. They indicate, contrary to expectation, that bright-

ness appears to explain more of the variation in m than greenness,

Table 3

Kauth-Thomas Indices

Index 32_
Greenness, GU 0.24
Brightness, BI 0.39

The regression analyses yielded,

10.47 + 0.14 GI

B
n

82.82 - 0.48 BI

B



Multiple Linear Regression

Multiple linear regressions were carried out with the same data set
as in previous cases with percent cover as the dependent variable and the
MSS band observations as independent variables. The two cases examined
were m vs. DN1 and DNZ; and m vs. DN1, DN2, DN3 and DN4. Once regression
coefficients were obtained, theoretical percent cover obtained from the
multiple linear regression analysis was regressed with actual percent
cover in order to compare correlation coefficients with other methods.
The results for the second case are shown on Exhibit 19 (for regression

with four bands) and summarized on Table 4.

Table 4

Results of Multiple Linear Regression

Regression Equation R2
m = -2.25 DN2 + 0.70 DN4 + 74.97 0.53
m = -2,07 DN1 - 0.62 DN2 + 0.20 DN3 + 0.63 DN4 + 72.25 0.58

As expected, there is negative correlation with the visible bands
and positive with the near infrared. It is also noted that the addition
of bands 1 and 3 only contributes an increase of 0.05 in R2.

Two—band Model

The two-band model as presented was applied to the foothills segment
of the scene where the type of vegetation was believed to be relatively
homogenéous. Two cases were investigated, those assuming constant and

variable (with m) vegetation reflectivities.,
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Application of the model consists of the following steps:

1) All data points within the segment are plotted.

2) Envelope lines are drawn along the three sides of the triangular
data space. The soil line is drawn as a straight line emanating from
the origin. (For the assumption of no shadows and constant vegetation
reflectivities, all sides of the triangle must be drawn straight.)

3) Along the soil line, m is assumed equal to zero. Likewise, at
the top of the triangle, m is assumed equal to one.

4) The calculation of m for any data point within the triangle
depends on the assumptions made. For ;onstant vegetation reflectivity,

m is assumed linearly related to the distance between the top and base of
the triangle. For example, for a point exactly halfway between the top
and the base, m is assumed equal to 50% cover. For the case of vegeta-
tion reflectivity linearly related to percent cover, m is estimated on
the basis of the shape of the envelope curves, which can be approximated
as second order polynomials in m.

The graphical results of the analyses applied to the Taos data are
shown in Exhibits 20 through 23. Exhibits 20 and 21 include identical
plots of all the data in the particular segment chosen (2250 pixels). It
is noted that the data space takes on a classical triangular shape.
Exhibit 20 also includes straight line envelope curves under the assump-
tion of constant vegetation reflectivity. Exhibit 21 includes curved
envelope lines under the assumption that vegetation reflectivity is
linearly related to m. Percent cover for each case was then estimated
according to the procedure outlined above.

Exhibits 22 and 23 include only the data points with ground trutﬁ.
In order to test the validity of the method, it was necessary to locate -

the data points with ground truth within the triangle and compare the
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actual percent cover, m, to that estimated graphically, m . The R2

values resulting from the regression of mg with m are shown in Table 5.

Table 5

Results of Two-Band Models

Two—Band Model Version R2

1) Constant Vegetation Reflectivity 0.34

2) Variable rv 0.30



Conclusions

There are several important conclusions which can be drawn from this
past year's work. In general, the results have established the feasibil-
ity of estimating percent canopy cover using either physically-based or
empirical models. The most successful empirical model for the Taos Study
Area was the normalized vegetation index, which explained about 60
percent of its variability in terms of m. About 50 percent of the
variability of the direct beam equation for the visible band could be
explained in terms of m using constant canopy and soil reflectivities.
For the near infrared band, only 10 percent of the variability could be
explained for the same conditions. The two-band model was able to
explain about 35 percent of its variability in terms of m.

While the use of NVI produced the best correlation, the results have
depended on the availability of ground truth. 1Its application to other
natural regions is therefore unknown. That is also true for the
physically-based models which use only one band, even with the
incorporation of slope and shadows.

It has also been shown that the characteristic triangular shape of
the two-band data space (MSS bands 2 and 4) can be explained in terms of
percent canopy cover, although other vegetation parameters, such as leaf
area and canopy reflectance, can also contribute to such shapes. A
simple version assuming constant canopy reflectance provided encouraging
results when applied to the Taos Study Area.

The major advantage of the two—-band model is in its ability to
estimate canopy cover without ground truth. It uses the entire data set
and éroQides the possibility of estimating other vegetation parameters by

7
careful incorporation of the limits of the data space into the analysis.



The simple version presented can be extended relatively easily to include
topography, shadows, leaf area, and variability (randomness) in canopy
reflectance (see Future Work).

There is always some uncertainty regarding the error introduced
through the data themselves. That includes inaccuracies in the estima-
tion of percent cover from the aerial photographs, errors in registration
of both the Landsat scene as well as the aerial photographs, anomalies in
the Landsat data, errors introduced through data filtering, and finally,
in the conversion of DN values to actual radiometric quantities. There
appears to be no easy way to estimate the magnitude of each of these
effects. Several of the more successful procedures should be applied to

an entirely new data set outside the Taos Study Area.
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Future Work

There are at least two research areas which have not yet been
exploited in the development of a working canopy cover algorithm using
Landsat data. The first involves an investigation of the random
distribution of the radiances when plotted in two-,‘three—, or four-band
space. The second involves the incorporation of additional surface
parameters into the canopy cover algorithm. Future work will try to
combine both these areas in order to extend the two-band procedure
introduced this past year. Further details are described below together
with an outline of the proposed mathematical formulation.

While the two-band method incorporates the limits of the data space
in determining m, it does not take full advantage of the distribution of
the radiances within the data space. A hypothetical example is shown in
Exhibit 24. By treating the observed radiances of the visible and near
infrared bands (R2 ,R4) as random fields, a joint probability distribu-
tion can be obtained. Most of the information of the segment is lqcated
within the interior of the data space, and not along the limits which
envelope the data. Up to now, the simple two-band model has incorporated
only information about the limits in a deterministic sense. By incorp-
orating randomness into the formulation, information contained in the
entire data set can be used. The above approach can be easily extended
to include the randomness of three- and four-band data spaces.

The second area which needs further research is the incorporation of
additional surface features into the canopy cover algorithm. Much of the
Taos Study Area is located in rolling foothills. It is obvious from the
aeri#l ﬁhotographs that Vegetation type and percent cover is a function

-
of the elevation, slope and azimuth of the land. The combined effect of



all those features is qualitatively seen in the Landsat images of
individual bands. It has been shown earlier in this report that such
parameters as shadows, ground slope and azimuth, leaf area index, and
species can be incorporated into the physical model. Several of those
features which were examined individually now need to be incorporated
into one model. A specific problem which needs to be worked out 1is the
effect of shadows for sloping surfaces on observed reflectivity.

The following mathematical formulation is intended to incorporate
the effects of both randomness and additional surface parameters into a
physically based canopy cover algorithm. The formulation is presented
for the case of two bands. The starting point is the direct beam
equation which can be written very generally in terms of reflectances for

the visible (MSS band 2) and near infrared (MSS band 4) wavelengths,

rz(m,p,Lz,B,e,s,u,w) = m rzv(p,Lz,B,e,s,u) + (l—m)rzs(s,e,n,w) (23)
rA(m,p,L4,B,6,S,u,W) =m r4v(D,L4,B’e »S,u) + (l_m)r4s(8 »0 ,1,W) (24)
where
m = percent Vegetation cover

p = percent shadow parameter
L, = leaf area indices for bands 2 and 4, respectively
B = ground slope
9 = zenith angle, which includes effects of ground slope, ground
azimuth, (altitude, hour angle, etc. )
s = vegetation species
n = soil ﬁoisture
u = a general parameter including factors other than those mentioned
above causing variability in canopy reflectancé, for e#ample, -

-

stress, disease, etc.



w = a general parameter including factors other than those listed
above causing soil reflectance variability, including organic

content, grain size and distribution, mineral content, ... etc.

Written in the above form, all the variability in r, and T,

is attributed to the variability in . and Ty’ For example,
since it has been demonstrated earlier that up to 60 percent of the

variability in r, can be explained by m, it follows that the balance

2
or 40 percent is due to rzv(p, LZ’ B, 6, s, u) and rZS(B, 8, T, W)
variability.

The next step is to try to remove some of that variability in Toy
and Tog by incorporating the effects of additional parameters, for
instance, slope and zenith angle. Introducing a new function, g(g,s) to

account for those effects, it can be shown that for flat surfaces (not

necessarily horizontal),

g(B,0) = cosg/cosp

where cosg is given by equation (22). Therefore,

r, = g(8,8)[m 1) (p,L,,s,u) + (I-m)r)  (n,w)] (26)
t, = &(8,8)[m 1, (p,L,,s,u) + (L-m)x; (r,w) (27)
where rév = rzv/g(g,e) (28)
rhs = T,./8(8,0) (29)
riv = r4v/g(8,e) (30)
r, = r../8(8,6) (31)
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ov and

Similarly, variability due to shadows can be removed from r
rAv using various geometric models indicated earlier. Let h(p) represent
the effect of shadows manifested by a geometric model on a sloping bed.
The variable p is a function of geometric shape (i.e., cone, cylinder) as

well as slope, azimuth and zenith angle. The reflectances can be

rewritten

~
W

g(8,8)[m h(p) r5  (L,s,u) + (1-m) T} _(n,w)] (32)

la]
]

4 g(B8,6)[m h(p) er (Lés,u) + (1-m) rzs(n,W)] (33)
where

ry, = Fpu/[8(8,0) h(p)]

(34)
Ty r4v/[g(8,e) h(p)]

In theory, one can continue developing functions f(L), j(s) and k(n)

and r, .

to remove more and more of the variability from Toe® Tayv? Tog? 4s

At each stage, however, additional unknowns are introduced into the
formulation, each associated with more ground truth. Since the intention
is to develop a model without the need for ground truth, it is reasonable
to stop at this point where no field data are required and use equations
(32) and (33) to estimate m in conjunction with the available informa-
tion. Let us first summarize the data and the major assumptions. |

The data include r, and r, obtained from the Landsat digital

2 4
counts. It is assumed that the atmosphere is optically thin, thereby
neglecting the scattering terms in the atmospheric radiative transfer
equation. The parameters B and 6 and hence g(g8,8) can be es;imated from
knowing time of Landsat overpass and from examination of USGS topographic

maps.



The function h(p) can be obtained analytically and requires
additional reasonable assumptions. Those include the shape of the
canopy (i.e., cones) and the spatial distribution of trees. For natural
conifer forests, a poisson distribution has often been assumed (Matern,
1960, Strahler et al., 1981, Li et al., 1985).

The unknowns in equations (32) and (33) are thus m, r’ r! , r

4y?

v’ T2s
and rZs' Making further the assumption
rzv = f(xz) A(s,u) (35)
e = £(a,) As,u) (36)
rés = g(lz) B(n,w) (37)
rzs = g(A4) B(n,w) (38)

where f()) and g()) are normalized reflectivity functions ranging from

zero to one, equations (32) and (33) become

2]
i

5 = 8(8,8)[m h(p) £(x,) A(s,u) + (1-m) g(x,) B(n,w)] (39)

2]
|

= g(B,0)[m h(p) f(xa) A(s,u) + (1-m) g(AA)AB(n.W)] (40)

There are now three unknowns, m, A(s,u) and B(n,w), associated with
equations (39) and (40). While the problem still requires one more equa-
tion, it has been greatly simplified by making only a few reasonable
assumptions and without ground truth, except for topographic data.

There are several approaches one can take to solve equations (39)
and (40). The first is to obtain a derived probability distribution of m

of the form

T om o= m[rz, r,, A(s,w), B(n,w)] (41)

4°
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This can be done numerically. The random functions A(s,w) and B(n,w)

might be obtained by conditionalizing on r, and T,

A second approach is to introduce a third equation rl or T,

either of the two remaining Landsat MSS bands, although problems of

using

independence between bands 1 and 2 or 3 and 4 might arise.

A third approach is to simply assume a priori that the data falling
on the lower base qf the data space triangle reflect background. This
leads to a direct calculation of the probability density function for
B(n,w), by conditionalizing along that background line. Once determined,
one can compute by means of equations (39) and (40), the two remaining
unknowns, A(s,u) and m.

It is not known which of the above three approaches work best for
obtaining the desired third equation. The third approach, assuming a
soil line, appears the most straightforward. It is also consistent with
other research which attempts to use>the soil line as an important
parameter in vegetation modeling. Future work will examine and evaluate

each of those alternatives.
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